

Hellenic Presidency Conference February 2014

Nutrition and Physical Activity from childhood to old age: challenges and opportunities

The evidence behind policy and action

Susanne Løgstrup, Director, European Heart Network 25 February 2014

Diet, Physical Activity and CVD Prevention in Europe (Nov/2011)

- Fat
- Salt
- Sugar
- Dietary fibre and complex carbohydrates
- Fruits & vegetables
- Overweight and obesity
- Physical activity
- Alcohol
- Folate
- Antioxidants

european heart network

Component	Intermediate targets	Longer-term goals
Total fat	<30% E	20-25% E
Saturated fat	<10% E	<7% E
Trans fats	<1% E	<0.5% E
Polyunsaturated fat	6-11% E	5-8% E
+ ALA and very long chain PUFAs		
Monounsaturated fat	8-13% E	7.5%-9.5% E
Fruit and veg.	>400g per day	>600g per day
Salt	<5g per day	<4g per day
Physical activity	>150 mins moderate	> than this
	intensity per week	
	+1 hour per day on	
	most days	
BMI (average for adults)	<23	21
Total carbohydrates	>55% E	60-70% E
Added sugar	<10% E	<5% E
Sugar sweetened drinks	As little as possible	Zero
Dietary fibre (NSP)	>20g per day	>25g per day

Recent research evidence

Most US adults consume more added sugar than is recommended for a healthy diet. We <u>observed a</u> <u>significant relationship between added sugar</u> <u>consumption and increased risk for CVD mortality</u>

JAMA Intern. Med. Published online February 3, 2014

Recent research evidence

...the review of evidence for this paper concluded that there is limited and inconsistent evidence for an effect of consumption of sugar on CVD risk. Most consistent evidence is found for an association between high intake of sugar-sweetened drinks and risks of CVD....

Diet, physical activity and cardiovascular disease prevention in Europe. *European Heart Network*, November 2011

CHD mortality projections to 2020 comparing different policy scenarios EuroHeart II – work package 6

Three scenarios modelled

Scenario	Decrease in saturated fat	Relative decrease in salt	Decrease in prevalence of physical inactivity	Decrease of smoking
Conservative	1%	10%	5%	5%
Intermediate	2%	20%	10%	10%
Optimistic	3%	30%	15%	15%

IMPACT: CHD mortality fall Poland 1991-2005

26,200 fewer deaths in 2005

1991

Risk Factors worse +7%

Obesity (increase)	+4.5%
Diabetes (increase)	+2.5%

Risk Factors better -66%

Cholesterol (diet)) -39%
Smoking	- 11%
Physical activity	-10%
Population BP fall	0% (îMen ↓Women)

Treatments	-38%
AMI treatments	-5 %
Unstable angina	-4%
Secondary prevention	-7%
Heart failure	-12%
Angina: CABG surgery	-2%
Angina ASA	- 1 %
Hypertension therapies	-2%
Statins (Primary prevention)	-3%

Unexplained

2005

-10%

Explaining the fall in coronary heart disease

200

deaths in Italy 1980-2000

1980

Risk Factors worse +4 %	
Obesity (increase)	+ 2%
Diabetes (increase)	+ 2.5%
Risk Factors better -44 %	
Cholesterol	-25 %
Smoking	- 9%
Population BP fall	- 4 %
Physical activity (incr.)	- 6 %
Treatments	-55 %
Angina	-12 %
CABG & PTCA	- 2 %
Angina: Aspirin etc	- 1 %
Hypertension therapies	- 1 %
Statins 1° prevention	- 2 %

Palmieri et al Am J Public H 2009

Explaining the CHD mortality fall in Sweden 1986-

Bjorck et al Eur Heart J 2009

Risk Factors worse +11%		
Obesity (increase)	+3%	
Diabetes (increase)	+8%	
Risk Factors better -66%		
Cholesterol (diet)	-39%	
Population BP fall	-9%	
Smoking	-20%	
Physical activity	-13%	
Freatments	-36%	
AMI treatments	-6%	
Unstable angina	-2%	
Secondary prevention	-12%	
Heart failure	-7%	
Angina:CABG & PTCA	-3%	
Hypertension therapies	-4%	
Statins (primary prevention)	-2%	

Unexplained

-9%

CHD mortality projections to 2020 comparing different policy scenarios EuroHeart II – work package 6

Reductions in CHD mortality:

Conservative scenario:10.5%Intermediate scenario:20.3%Optimistic scenario:29.1%

Cardiovascular diseases (CVD) EuroHeart II – work package 4

– CVD

→ over 4 million deaths in Europe

 \rightarrow over 1.9 million deaths in the EU

– CHD

→ 1.8 million deaths in Europe

 \rightarrow over 681 000 deaths in the EU

– Stroke

 \rightarrow almost 1.1 deaths in Europe

 \rightarrow over 460 000 deaths in the EU

Deaths by cause, women, latest available year, EU

Age-standardised death rates from CHD, <u>women</u> aged under 65, latest available year, Europe

Identifying the most effective and cost-effective public health nutrition policy options for CVD prevention EuroHeart II – work package 5

- Increasing evidence suggests that the largest benefits might be achieved by "upstream" comprehensive, multi-level interventions (for instance policies targeted at decreasing salt and saturated and trans fat consumption, or increasing fruit and vegetable intake)
- Effective population-wide interventions appear to be consistently cost-effective and often cost-saving
- However, the adoption, implementation and evaluation of the most effective policies remain patchy and variable across Europe

EuroHeart II – work package 5

Key Informant Interviews in 14 countries

- Belgium
- Czech Republic
- England
- Estonia
- Finland
- Germany
- Greece

- Iceland
- Ireland
- Italy
- Malta
- Poland
- Portugal
- Slovenia

EuroHeart II – work package 5 Key Informant Interviews in 14 countries

- Perceive that regulatory interventions are more effective than selfregulation – equity often quoted
 - But voluntary approaches easier to achieve
- Think that regulation of trans fat could be achieved and likely also salt
- Find that regulation is particularly necessary with regard to school meals and foods and drinks sold in schools
- Find that lack of data and evidence makes it hard to assess costeffectiveness

EuroHeart II – work package 5

Key Informant Interviews in 14 countries

Barriers identified:

- Lack of political will
- Lack of resources/capacity
- Influence of food industry
- No consensus/collaboration
- Lack of country-specific data and evidence
- No support
- Lack of national nutritional policy

Europe or member state level?

• EU should lead on nutrition issues that cross borders

• But member states must act in parallel

Death rates from CHD, <u>men</u> aged 0 to 64 years, 1980 to 2010, selected countries

Trends in age-specific coronary heart disease mortality in the European Union over three decades: 1980–2009 EuroHeart II – work package 4

It was hypothesised that observed reductions in CHD mortality had occurred largely within older age groups, and that rates in younger groups may be plateauing or increasing as the gains from reduced smoking rates are increasingly cancelled out by increasing rates of obesity and diabetes

Conclusions:

- There is limited evidence to support the hypothesis that CHD mortality rates in younger age groups are plateauing in the EU as a whole, However, in some countries there was evidence of recent plateauing in some age groups
- Two EU Member States Greece and Lithuania have recorded a net increase in agestandardised CHD mortality rates for those less than 45 years of age
- > Substantial inequalities persist between EU Member States

Population Assessment of Future Trajectories in Coronary Heart Disease Mortality – Iceland

Future CHD mortality rate among 25-74 year olds in three different risk-factor scenarios

Acknowledgements

Thank you to the European Union for its financial support to the EuroHeart II project

Contact

www:ehnheart.org